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Roadmap of Talk
• Introduction to ATOM Consortium

• Introduction to small molecule drug discovery data

• Target specific drug modeling approaches

• Structure based multi-target modeling
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ATOM is an open public-private partnership for accelerating drug 
discovery

Goals
• Accelerate the drug discovery process
• Improve success rate in translation to 

patients
Approach

• Computation-driven drug design, supported and 
validated by targeted experiments

• Data-sharing to build models using everyone’s 
data

Product
• An open-source platform for active-learning 

based molecular design and optimization

Status
- Shared collaboration space at Mission Bay, SF
- 25 FTEs engaged across

the partners
- R&D started February 2018

Drug discovery, 
chemistry, and dark 

data

Example member contributions

Accelerating Therapeutics for Opportunities in Medicine (ATOM)



Current drug discovery: long, costly, high failure
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Goal: transform early drug discovery to get drugs to patients faster

Target

Lengthy in-vitro 
and in-vivo 

experiments; 
Synthesis 

bottlenecks

• 33% of total cost of medicine development
• Clinical success only ~12%, indicating poor translation in patients

Source: http://www.nature.com/nrd/journal/v9/n3/pdf/nrd3078.pdf

Human clinical 
trials

Screen millions 
of functional 
molecules to 
inform design

Lead Discovery
1.5 yrs

Lead Optimization
3 yrs

Preclinical
1.5 yrs

Design, make, & test 
1000s of new 

molecules 
Sequential evaluation 

and optimization

6 years



The ATOM Platform
Active Learning Drug Discovery Framework
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Two computational challenges to highlight 
1. Efficient exploration of chemical space
2. Optimize against multiple criteria at once



The ATOM Platform
Active Learning Drug Discovery Framework
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• AMPL pipeline – training and 
optimization for property 
prediction models

• Generative model training 
framework

• Structural models

Generative molecular design loop 
2

1
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• Systems modeling

Targeting GMD platform for opensource release after partner testing
(currently Frederick National Lab, LBNL)

1) Jacobs et al., 2021 IJHPCA
2) Minnich et al., 2020 JCIM ; McLoughlin et al., 2021 JCIM
3) Zhang et al., 2017 CTMC, Jones et al., 2021 JCIM
4) Murad et al., 2021 DMD
5) Code approved for release, manuscript forthcoming
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The ATOM Platform
Active Learning Drug Discovery Framework
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optimization for property 
prediction models
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Types of drug discovery screening assays
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• Cell-based assays
• Immunoassays
• Enzyme activity assays
• Phenotypic assays

• Cytotox assays

www.enzolifesciences.com/

Example IC50 curve

Measurements: 
• IC50, AC50, Ki, Kd
• Single concentration % inhibition
Benefits:
• Limited knowledge of the precise 

molecular mechanisms of action
Drawbacks: 
• The same molecule may yield very 

different results depending on the assay 
technology

https://www.enzolifesciences.com/


Types of medicinal chemistry, pharmacokinetics properties
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• Med. Chem
• Solubility
• Dissociation constants (pKa, 

pKb)
• Octanol water partitioning (logP, 

logD)
• Permeability through biological 

membranes (Papp)
• Transporter substrates and 

inhibition

• Pharmacokinetics and toxicity properties
• Fraction unbound to plasma proteins (fup)
• Ratio of blood to plasma (RBP)
• Fraction unbound in liver microsomes 

(fumic)
• Volume of distribution at steady state 

(VDss)
• Clearance (CL)
• Metabolic enzyme substrates and 

inhibitors (CYP, UGT)
• Liver toxicity (BSEP, MRP3, …)
• Cardiac toxicity (KCNH2, …)



Common data sources to build model ready datasets
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ChEMBL – Manually curated repository of bioactive molecules (updated)
• Sponsored by European Bioinformatics Institute (EMBL-EBI)
• 1.9M compounds, 11K targets

Excape-DB – Exascale Compound Activity Prediction
• EU program on predictive modeling for compound activities
• 1M compounds, 1.7K targets

Drug Target Commons – An open multi-database platform for curation with  common ontology
• Sponsored by University of Helsinki
• Largest source is CHEMBL
• 1.7M compounds, 13K targets

Excelra GoSTAR (updated)
• Commercial database
• 7.8M compounds, 9.3K targets
• Derived data products (e.g. models) are open



Introduction to 
Quantitative Structure 
Activity Relationships 
(QSAR)
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Cheminformatics datasets
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CHEMBL2106227

CHEMBL27289

CHEMBL2094620

CHEMBL70633

CHEMBL1951415

Compound ID Structure MW AlogP Target Active IC50 (uM)

False 1.5

False 3

True 0.10

False > 100

False > 100

Aurora kinase B

Aurora kinase B

Aurora kinase B

Aurora kinase B

Aurora kinase B



Types of machine learning tasks
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CHEMBL2106227

CHEMBL27289

CHEMBL2094620

CHEMBL70633

CHEMBL1951415

Compound ID Structure Active IC50 (uM)

False 1.5

False 3

True 0.10

False > 100

False > 100

Classification task
(with classes)

Regression task
(with numerical values)



How do we encode molecules?
• There are many featurization approaches
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Molecular descriptors
clogD TPSA QM1 …
3.1 10.2 4.1 …

?
Fingerprints



How do we predict a property?
• Fit machine learning models and parameters to predict properties
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1.5

3

0.10

> 100

> 100

Featurization

Neural network
• Mathematical functions
• Parameters for functions

Random Forest
• Decision trees based on features
• Forest: Collection of decision trees



What about Deep Learning?
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• Deep convolutional neural 
networks (DCNN) have been 
successful in a variety of 
tasks

• Image recognition
• Natural language processing
• AlphaGo

• Two key cheminformatics 
applications:

• Representation learning
• Multi-task and transfer learning

Izadyyazdanabadi Frontiers Oncology 2018



Deep learning for QSAR
• Yes, there are now several deep models for chemistry applications
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1.5

3

0.10

> 100

> 100

Machine 
learning model

• Message Passing Neural Networks
• Spatial graph
• Weave model
• Others

Wu arXiv:1703.00564v3 



How can we test our model?
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• Test model predictions 
prospectively on new compounds 
to be measured

• Artificially split historic data into 
sets

• Training
• Validation
• Test

• Test set becomes the simulated
prospectively tested compounds

Training

Test

Valid

Dataset splitting



The ATOM 
Modeling PipeLine
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AMPL: The ATOM Modeling PipeLine

• Many ML algorithms exist but they are not “one size fits all”
• Building state-of-the-art reproducible models remains challenging
• Goal of AMPL: an open source tool to automate QSAR model fitting

21

Molecular 
structure

Predicted 
activities and 
properties 

IC50
AC50
LogP
fup
CL

From chemical structure and bioassay/property data to model to prediction



AMPL: The ATOM Modeling PipeLine
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1. Data curation • Generation of RDKit molecular SMILES structures
• Processing of qualified or censored data processing
• Curation of activity and property values 

2. Featurization • Extended connectivity fingerprints (ECFP)
• Graph convolution latent vectors from DeepChem
• Chemical descriptors from Mordred package
• Descriptors generated by MOE (requires MOE license)

3. Model training 
and tuning

• Test set selection
• Cross-validation
• Uncertainty quantification
• Hyperparameter optimization

4. Supported 
models

• scikit-learn random forest models
• XGBoost models
• Fully connected neural networks
• Graph convolution models (DeepChem)

5. Visualization 
and analysis

• UMAP
• Chemical diversity analysis



Using AMPL: Curation
• Remove inaccurate or 

incorrect structures
• Clean structures

• Generate canonical 
representation

• Analyze duplicates
• Average measurements

• Analyze properties
• Characterize structures and 

features
• Examine predicted property or 

activity distributions
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Using AMPL: Curation
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incorrect structures
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Using AMPL: Curation – track measurement variability
• Remove inaccurate or 

incorrect structures
• Clean structures

• Generate canonical 
representation

• Analyze duplicates
• Average measurements

• Analyze properties
• Characterize structures and 

features
• Examine predicted property or 

activity distributions

25
optibrium.com, Kalliokoski, PLOS ONE, 2013

Distribution of pIC50 
and pKi for protein 
ligand systems



Important to have searchable, sharable, reusable datasets

• Store raw data and final machine learning ready dataset
• 'file_category': 'experimental’, 
• 'assay_category’: ‘safety’, 
• 'assay_endpoint' : 'pic50’, 
• 'curation_level': 'ml_ready’, 
• 'data_origin' : ‘ExcapeDB’,
• 'functional_area’ : ’Liability screen’, 
• 'matrix' : 'multiple values’, 
• 'journal_doi’ : https://doi.org/10.1016/j.chembiol.2017.11.009’, 
• 'sample_type' : 'in_vitro’, 
• 'species' : ‘human’, 
• 'target' : 'CYP2D6’, 
• 'target_type' : ‘protein’, 
• 'id_col' : 'compound_id’, 
• 'response_col' : 'VALUE_NUM_mean’, 
• 'prediction_type' : 'regression’, 
• 'smiles_col' : ‘rdkit_smiles’, 
• 'units’ : -log10 molar’, 
• 'source_file_id’ : source_of_raw_data, 
• ‘user’ : ‘user99’
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https://doi.org/10.1016/j.chembiol.2017.11.009
https://doi.org/10.1016/j.chembiol.2017.11.009


Modeling uncertainty
• Random Forest

• Calculate the standard deviation of predictions from individual trees
• Neural Networks 

• Use DeepChem’s method, which combines aleatoric (sensing 
uncertainty) and epistemic (model uncertainty) values (Kendall and 
Gall 2017)

• Aleatoric: Modify loss function and train model to predict both response 
variable and input variance

• Epistemic: Apply dropout masks during prediction and quantify 
variability in predictions

• Then 𝜎!"!#$ = 𝜎#$%#!"&'() + 𝜎%*'+!%,'()



Model uncertainty is critical to active learning and remains an 
open challenge

28

Calibration curveUncertainty/prediction bias

Blood plasma binding (HSA)



Domain of applicability
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K nearest neighbors mean distance local density

● Euclidean distance

● Calculate pairwise distance between points in the training set

● For each point in the prediction set, calculate the mean distance of the point to its K nearest 
neighbors in the training set.

● For the K nearest neighbors of each prediction point, calculate the mean distance of their K 
nearest neighbors in the training set.

● Calculate the ratio as below.

Tax, David MJ, and Robert PW Duin. Joint IAPR international workshops on statistical techniques in pattern recognition (SPR) and structural and syntactic pattern recognition (SSPR). 
Springer, Berlin, Heidelberg, 1998.



AMPL Tutorials available to run with Collab

1. Data Collection and creating 
Machine-Learning ready 
datasets

2. Model training and tuning
3. Hyper-parameter Optimization 

(HPO), Uncertainty 
Quantification (UQ), and using 
metrics for analyzing model 
performance.

4. Creating high-quality models
5. Model Inference

30

https://github.com/ATOMconsortium/AMPL/tree/Tutorials/atomsci/ddm/examples/tutorials

Thanks to Ravichandran Sarangan (FNL)



ATOM Modeling 
PipeLine validation
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Safety validation classification models

32

• Neural network and random 
forest models were able to 
differentiate between active 
and inactive test compounds 
on these tasks

Best model test set ROC AUC

Splitting 
method

Scaffold based

Model types Neural network, random forest

Model target assay



Pharmacokinetics validation regression models
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Best model scaffold-split test set R2

Splitting 
method

Scaffold based

Features Extended connectivity 
fingerprint (ECFP), graph 
convolution (DeepChem), 
Mordred, MOE

Model 
types

Neural network, random 
forest

Model property assay

• Neural network and random 
forest models were able to 
predict many PK properties



Effect of dataset size: Big data

• Larger datasets were beneficial for fitting models for 
pharmacokinetics properties
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Effect of feature and model types: Which is better?

• Graph convolutional DeepChem featurization worked well with 
neural network models

• MOE descriptors worked well with random forest models

35

Count of best pharmacokinetics models by featurization type



The ATOM Platform
Active Learning Drug Discovery Framework
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• Structural models 3



Calculated protein interactions with new molecules presents scaling 
challenges for virtual screens

§ Vina – speed=moderate fast (1-2 minutes)

§ Molecular Mechanics – Generalized Born / Surface Area 
(MM/GBSA) -- speed=moderate (62 minutes)

§ Implicit solvent Molecular Dynamics (MD) = slower (7.2 
hrs/GPU)

§ Explicit solvent MD = slower (at least 7.2 hrs)

Physics based protein-ligand binding affinity does not scale to modeling billions of 
interactions

In a virtual screen we want to evaluate billions of virtual molecules: 
a “needle in the haystack” problem



Two machine learning strategies currently employed

• Generate target specific scoring data using MM/GBSA
• Use ML model to learn scoring function (surrogate model)

• Pros: Develop a faster scoring function that could match MM/GBSA accuracy
• Cons: MM/GBSA scores still have limitations in accuracy

• Use 3D structure based spatial information to learn across 
multiple targets

• Pros: Train on experimental binding data, apply to any new target 
(within reason-relative to training data)

• Cons: Requires some 3D structure of the protein and a pocket



Fusion models for Atomic and molecular STructures
(FAST)

• 3D-CNNs have been used by numerous teams starting with AtomNet in 2015. 
(AtomWise)

• 3D Spatial Graphs were introduced with PotentialNet in 2018. (Genesis Therapeutics)
• No publications comparing the approaches directly
• Our results suggest potential benefits for combining two approaches 
• Open Source: https://github.com/llnl/fast
• Paper: Jones, D., Kim, H et al., 2021 JCIM 

(https://pubs.acs.org/doi/full/10.1021/acs.jcim.0c01306)

https://github.com/llnl/fast


Extract atomic features that generalize across multiple targets

• Element type: one-hot encoding of B, C, N, O, P, S, Se, halogen or metal

• Atom hybridization (1, 2, or 3)

• Number of heavy atom bonds (i.e., heavy valence)

• Number of bonds with other heteroatoms

• Structural properties: bit vector (1 where present) encoding of hydrophobic, 
aromatic, acceptor, donor, ring

• Partial charge

• Molecule type to indicate protein atom versus ligand atom (-1 for protein, 1 for 
ligand)

• Van der Waals radius



Model is trained on existing experimentally solved structures

…..

Ligand A
Protein A + Ki

Ligand B
Protein B + Ki

Ligand C
Protein C + Ki

Models trained on a dataset called 2016 version of PDBBind http://www.pdbbind.org.cn/
Training size = 13,308 complexes

Created a special hold out set – structures taken from 2019 with a detailed analysis
to find structurally novel pockets and novel ligands – 222 complexes.

Current training size (2019):
17,679 samples

http://www.pdbbind.org.cn/


Fusion model performs well compared to other costly methods

Fusion model provides a more scalable alternative or compliment to more expensive scoring functions
Fusion model scores 108 poses per second (with 4 compute nodes) and is 403 times faster than MM/GBSA

May still have model uncertainty with new parts of chemical space



Conclusion
• There is no universal optimal model that can be applied to every new 

dataset. General heuristics:
• Smaller datasets: Random Forests with MOE descriptors
• Larger datasets: Neural Networks with descriptors or graph learned features
• Static fingerprint methods tend to be less competitive

• Quantifying model uncertainty remains an open but important 
challenge

• In the absence of data, machine learning models can still be used by 
exploiting cross-target learning

• Presented tools are open-source software to support computational 
drug discovery in non-commercial settings
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